Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308515

RESUMO

Several studies have investigated changes in microbial community composition in thawing permafrost landscapes, but microbial assemblages in the transient ecosystems of the Arctic coastline remain poorly understood. Thermokarst lakes, abrupt permafrost thaw features, are widespread along the pan-Arctic coast and transform into thermokarst lagoons upon coastal erosion and sea-level rise. This study looks at the effect of marine water inundation (imposing a sulfate-rich, saline environment on top of former thermokarst lake sediments) on microbial community composition and the processes potentially driving microbial community assembly. In the uppermost lagoon sediment influenced from marine water inflow, the microbial structures were significantly different from those deeper in the lagoon sediment and from those of the lakes. In addition, they became more similar along depth compared with lake communities. At the same time, the diversity of core microbial consortia community decreased compared with the lake sediments. This work provides initial observational evidence that Arctic thermokarst lake to lagoon transitions do not only substantially alter microbial communities but also that this transition has a larger effect than permafrost thaw and lake formation history.


Assuntos
Microbiota , Pergelissolo , Lagos/química , Regiões Árticas , Água
2.
Front Microbiol ; 15: 1319997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298893

RESUMO

The microbiota is attributed to be important for initial soil formation under extreme climate conditions, but experimental evidence for its relevance is scarce. To fill this gap, we investigated the impact of in situ microbial communities and their interrelationship with biocrust and plants compared to abiotic controls on soil formation in initial arid and semiarid soils. Additionally, we assessed the response of bacterial communities to climate change. Topsoil and subsoil samples from arid and semiarid sites in the Chilean Coastal Cordillera were incubated for 16 weeks under diurnal temperature and moisture variations to simulate humid climate conditions as part of a climate change scenario. Our findings indicate that microorganism-plant interaction intensified aggregate formation and stabilized soil structure, facilitating initial soil formation. Interestingly, microorganisms alone or in conjunction with biocrust showed no discernible patterns compared to abiotic controls, potentially due to water-masking effects. Arid soils displayed reduced bacterial diversity and developed a new community structure dominated by Proteobacteria, Actinobacteriota, and Planctomycetota, while semiarid soils maintained a consistently dominant community of Acidobacteriota and Proteobacteria. This highlighted a sensitive and specialized bacterial community in arid soils, while semiarid soils exhibited a more complex and stable community. We conclude that microorganism-plant interaction has measurable impacts on initial soil formation in arid and semiarid regions on short time scales under climate change. Additionally, we propose that soil and climate legacies are decisive for the present soil microbial community structure and interactions, future soil development, and microbial responses.

3.
ISME J ; 17(8): 1224-1235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217592

RESUMO

Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25-50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions.


Assuntos
Microbiota , Pergelissolo , Pergelissolo/química , Solo/química , Microbiologia do Solo , Microbiota/genética , Metagenoma , Carbono/metabolismo
4.
Glob Chang Biol ; 29(10): 2714-2731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811358

RESUMO

Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4 ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 µmol g-1 , with highly depleted δ13 C-CH4 values ranging from -89‰ to -70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 µmol g-1 with comparatively enriched δ13 C-CH4 values of -54‰ to -37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.


Assuntos
Sedimentos Geológicos , Microbiota , Metano/análise , Anaerobiose , Lagos , Água/análise , Sulfatos/análise
5.
Commun Biol ; 6(1): 72, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653523

RESUMO

Sedimentary DNA-based studies revealed the effects of human activity on lake cyanobacteria communities over the last centuries, yet we continue to lack information over longer timescales. Here, we apply high-resolution molecular analyses on sedimentary ancient DNA to reconstruct the history of cyanobacteria throughout the Holocene in a lake in north-eastern Germany. We find a substantial increase in cyanobacteria abundance coinciding with deforestation during the early Bronze Age around 4000 years ago, suggesting increased nutrient supply to the lake by local communities settling on the lakeshore. The next substantial human-driven increase in cyanobacteria abundance occurred only about a century ago due to intensified agricultural fertilisation which caused the dominance of potentially toxic taxa (e.g., Aphanizomenon). Our study provides evidence that humans began to locally impact lake ecology much earlier than previously assumed. Consequently, managing aquatic systems today requires awareness of the legacy of human influence dating back potentially several millennia.


Assuntos
Cianobactérias , DNA Antigo , Humanos , Lagos/microbiologia , Efeitos Antropogênicos , Cianobactérias/genética , Ecologia
6.
Nat Commun ; 13(1): 6074, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241637

RESUMO

Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback.


Assuntos
Gases de Efeito Estufa , Pergelissolo , Carbono/análise , Nitrogênio/análise , Óxido Nitroso , Pergelissolo/química , Solo/química
7.
Antonie Van Leeuwenhoek ; 115(10): 1229-1244, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35947314

RESUMO

Archaea belonging to the phylum Bathyarchaeota are the predominant archaeal species in cold, anoxic marine sediments and additionally occur in a variety of habitats, both natural and man-made. Metagenomic and single-cell sequencing studies suggest that Bathyarchaeota may have a significant impact on the emissions of greenhouse gases into the atmosphere, either through direct production of methane or through the degradation of complex organic matter that can subsequently be converted into methane. This is especially relevant in permafrost regions where climate change leads to thawing of permafrost, making high amounts of stored carbon bioavailable. Here we present the analysis of nineteen draft genomes recovered from a sediment core metagenome of the Polar Fox Lagoon, a thermokarst lake located on the Bykovsky Peninsula in Siberia, Russia, which is connected to the brackish Tiksi Bay. We show that the Bathyarchaeota in this lake are predominantly peptide degraders, producing reduced ferredoxin from the fermentation of peptides, while degradation pathways for plant-derived polymers were found to be incomplete. Several genomes encoded the potential for acetogenesis through the Wood-Ljungdahl pathway, but methanogenesis was determined to be unlikely due to the lack of genes encoding the key enzyme in methanogenesis, methyl-CoM reductase. Many genomes lacked a clear pathway for recycling reduced ferredoxin. Hydrogen metabolism was also hardly found: one type 4e [NiFe] hydrogenase was annotated in a single MAG and no [FeFe] hydrogenases were detected. Little evidence was found for syntrophy through formate or direct interspecies electron transfer, leaving a significant gap in our understanding of the metabolism of these organisms.


Assuntos
Gases de Efeito Estufa , Hidrogenase , Archaea/genética , Archaea/metabolismo , Carbono/metabolismo , Fermentação , Ferredoxinas/metabolismo , Formiatos/metabolismo , Gases de Efeito Estufa/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Peptídeos/metabolismo , Polímeros/metabolismo , Sibéria
8.
Glob Chang Biol ; 28(17): 5007-5026, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722720

RESUMO

The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.


Assuntos
Microbiota , Pergelissolo , Regiões Árticas , Retroalimentação , Pergelissolo/química , Filogenia , Solo/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-35482521

RESUMO

Strain NGK65T, a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65T hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 °C, in 0-1% NaCl and at pH 7.5-8.0. Glycerol, d-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate, sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C16:0 followed by iso-C17:0 and C18:1 ω9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3γ, with ll-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65T belongs to the genus Nocardioides (phylum Actinobacteria), appearing most closely related to Nocardioides daejeonensis MJ31T (98.6%) and Nocardioides dubius KSL-104T (98.3%). The genomic DNA G+C content of strain NGK65T was 68.2%. Strain NGK65T and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9% as well as digital DNA-DNA hybridization values between 22.5 and 19.7%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65T can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65T (=DSM 113112T=NCCB 100846T).


Assuntos
Actinomycetales , Nocardioides , Alcanos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , Plásticos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
10.
Artigo em Inglês | MEDLINE | ID: mdl-35467502

RESUMO

Strain NGK35T is a motile, Gram-stain-negative, rod-shaped (1.0-2.1 µm long and 0.6-0.8 µm wide), aerobic bacterium that was isolated from plastic-polluted landfill soil. The strain grew at temperatures between 6 and 37 °C (optimum, 28 °C), in 0-10 % NaCl (optimum, 1 %) and at pH 6.0-9.5 (optimum, pH 7.5-8.5). It was positive for cytochrome c oxidase, catalase as well as H2S production, and hydrolysed casein and urea. It used a variety of different carbon sources including citrate, lactate and pyruvate. The predominant membrane fatty acids were C16 : 1 cis9 and C16 : 0, followed by C17 : 0 cyclo and C18 : 1 cis11. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine, followed by diphosphatidyglycerol. The only quinone was ubiquinone Q-8. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK35T belongs to the genus Paenalcaligenes (family Alcaligenaceae), appearing most closely related to Paenalcaligenes hominis CCUG 53761AT (96.90 %) and Paenalcaligenes suwonensis ABC02-12T (96.94 %). The genomic DNA G+C content of strain NGK35T was 52.1 mol %. Genome-based calculations (genome-to-genome distance, average nucleotide identity and DNA G+C content) clearly indicated that the isolate represents a novel species within the genus Paenalcaligenes. Based on phenotypic and molecular characterization, strain NGK35T can clearly be differentiated from its phylogenetic neighbours establishing a novel species, for which the name Paenalcaligenes niemegkensis sp. nov. is proposed. The type strain is NGK35T (=DSM 113270T=NCCB 100854T).


Assuntos
Alcaligenaceae , Plásticos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
11.
Front Microbiol ; 12: 761259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777314

RESUMO

Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p < 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter-when the water column is mixed-picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes.

12.
Syst Appl Microbiol ; 44(6): 126248, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34624710

RESUMO

Three strains of methanotrophic bacteria (EbAT, EbBT and Eb1) were isolated from the River Elbe, Germany. These Gram-negative, rod-shaped or coccoid cells contain intracytoplasmic membranes perpendicular to the cell surface. Colonies and liquid cultures appeared bright-pink. The major cellular fatty acids were 12:0 and 14:0, in addition in Eb1 the FA 16:1ω5t was also dominant. Methane and methanol were utilized as sole carbon sources by EbBT and Eb1, while EbAT could not use methanol. All strains oxidize methane using the particulate methane monooxygenase. Both strains contain an additional soluble methane monooxygenase. The strains grew optimally at 15-25 °C and at pH 6 and 8. Based on 16S rRNA gene analysis recovered from the full genome, the phylogenetic position of EbAT is robustly outside any species clade with its closest relatives being Methylomonas sp. MK1 (98.24%) and Methylomonas sp. 11b (98.11%). Its closest type strain is Methylomonas methanica NCIMB11130 (97.91%). The 16S rRNA genes of EbBT are highly similar to Methylomonas methanica strains with Methylomonas methanica R-45371 as the closest relative (99.87% sequence identity). However, average nucleotide identity (ANI) and digital DNA-DNA-hybridization (dDDH) values reveal it as distinct species. The DNA G + C contents were 51.07 mol% and 51.5 mol% for EbAT and EbBT, and 50.7 mol% for Eb1, respectively. Strains EbAT and EbBT are representing two novel species within the genus Methylomonas. For strain EbAT we propose the name Methylomonas albis sp. nov (LMG 29958, JCM 32282) and for EbBT, we propose the name Methylomonas fluvii sp. nov (LMG 29959, JCM 32283). Eco-physiological descriptions for both strains are provided. Strain Eb1 (LMG 30323, JCM 32281) is a member of the species Methylovulum psychrotolerans. This genus is so far only represented by two isolates but Eb1 is the first isolate from a temperate environment; so, an emended description of the species is given.


Assuntos
Methylomonas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Methylococcaceae , Methylomonas/genética , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Rios , Análise de Sequência de DNA
13.
Microorganisms ; 9(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34576771

RESUMO

The concept of a 'plastisphere microbial community' arose from research on aquatic plastic debris, while the effect of plastics on microbial communities in soils remains poorly understood. Therefore, we examined the inhabiting microbial communities of two plastic debris ecosystems with regard to their diversity and composition relative to plastic-free soils from the same area using 16S rRNA amplicon sequencing. Furthermore, we studied the plastic-colonizing potential of bacteria originating from both study sites as a measure of surface adhesion to UV-weathered polyethylene (PE) using high-magnification field emission scanning electron microscopy (FESEM). The high plastic content of the soils was associated with a reduced alpha diversity and a significantly different structure of the microbial communities. The presence of plastic debris in soils did not specifically enrich bacteria known to degrade plastic, as suggested by earlier studies, but rather shifted the microbial community towards highly abundant autotrophic bacteria potentially tolerant to hydrophobic environments and known to be important for biocrust formation. The bacterial inoculates from both sites formed dense biofilms on the surface and in micrometer-scale surface cracks of the UV-weathered PE chips after 100 days of in vitro incubation with visible threadlike EPS structures and cross-connections enabling surface adhesion. High-resolution FESEM imaging further indicates that the microbial colonization catalyzed some of the surface degradation of PE. In essence, this study suggests the concept of a 'terrestrial plastisphere' as a diverse consortium of microorganisms including autotrophs and other pioneering species paving the way for those members of the consortium that may eventually break down the plastic compounds.

14.
Microorganisms ; 9(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442857

RESUMO

Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations.

15.
Mol Ecol ; 30(20): 5094-5104, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34387003

RESUMO

Temperature is an important factor governing microbe-mediated carbon feedback from permafrost soils. The link between taxonomic and functional microbial responses to temperature change remains elusive due to the lack of studies assessing both aspects of microbial ecology. Our previous study reported microbial metabolic and trophic shifts in response to short-term temperature increases in Arctic peat soil, and linked these shifts to higher CH4 and CO2 production rates (Proceedings of the National Academy of Sciences of the United States of America, 112, E2507-E2516). Here, we studied the taxonomic composition and functional potential of samples from the same experiment. We see that along a high-resolution temperature gradient (1-30°C), microbial communities change discretely, but not continuously or stochastically, in response to rising temperatures. The taxonomic variability may thus in part reflect the varied temperature responses of individual taxa and the competition between these taxa for resources. These taxonomic responses contrast the stable functional potential (metagenomic-based) across all temperatures or the previously observed metabolic or trophic shifts at key temperatures. Furthermore, with rising temperatures we observed a progressive decrease in species diversity (Shannon Index) and increased dispersion of greenhouse gas (GHG) production rates. We conclude that the taxonomic variation is decoupled from both the functional potential of the community and the previously observed temperature-dependent changes in microbial function. However, the reduced diversity at higher temperatures might help explain the higher variability in GHG production at higher temperatures.


Assuntos
Microbiota , Solo , Regiões Árticas , Dióxido de Carbono/análise , Metano , Microbiota/genética , Microbiologia do Solo , Temperatura
16.
ISME J ; 15(11): 3258-3270, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34012103

RESUMO

Plasmids have the potential to transfer genetic traits within bacterial communities and thereby serve as a crucial tool for the rapid adaptation of bacteria in response to changing environmental conditions. Our knowledge of the environmental pool of plasmids (the metaplasmidome) and encoded functions is still limited due to a lack of sufficient extraction methods and tools for identifying and assembling plasmids from metagenomic datasets. Here, we present the first insights into the functional potential of the metaplasmidome of permafrost-affected active-layer soil-an environment with a relatively low biomass and seasonal freeze-thaw cycles that is strongly affected by global warming. The obtained results were compared with plasmid-derived sequences extracted from polar metagenomes. Metaplasmidomes from the Siberian active layer were enriched via cultivation, which resulted in a longer contig length as compared with plasmids that had been directly retrieved from the metagenomes of polar environments. The predicted hosts of plasmids belonged to Moraxellaceae, Pseudomonadaceae, Enterobacteriaceae, Pectobacteriaceae, Burkholderiaceae, and Firmicutes. Analysis of their genetic content revealed the presence of stress-response genes, including antibiotic and metal resistance determinants, as well as genes encoding protectants against the cold.


Assuntos
Pergelissolo , Solo , Bactérias/genética , Microbiologia do Solo , Tundra
17.
Glob Chang Biol ; 27(12): 2822-2839, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774862

RESUMO

Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1-year-long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO2 ) and methane (CH4 ) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L-1 ). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO2 -C g-1  dw, 28 ± 36 µg CH4 -C g-1  dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO2 -C g-1  dw, 19 ± 29 µg CH4 -C g-1  dw). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation.


Assuntos
Gases de Efeito Estufa , Lagos , Regiões Árticas , Biomarcadores , Lipídeos , Metano/análise , Federação Russa , Sibéria
18.
Sci Rep ; 10(1): 22412, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376244

RESUMO

Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.


Assuntos
Biodiversidade , Bryopsida/microbiologia , Microbiota/fisiologia , Sphagnopsida/microbiologia , Áreas Alagadas , Regiões Árticas
19.
Trends Microbiol ; 28(9): 769-779, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32362540

RESUMO

Permafrost covers a quarter of the northern hemisphere land surface and contains twice the amount of carbon that is currently present in the atmosphere. Future climate change is expected to reduce its near-surface cover by over 90% by the end of the 21st century, leading to thermokarst lake formation. Thermokarst lakes are point sources of carbon dioxide and methane which release long-term carbon stocks into the atmosphere, thereby initiating a positive climate feedback potentially contributing up to a 0.39°C rise of surface air temperatures by 2300. This review describes the potential role of thermokarst lakes in a warming world and the microbial mechanisms that underlie their contributions to the global greenhouse gas budget.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Aquecimento Global , Lagos/microbiologia , Metano/metabolismo , Archaea/genética , Regiões Árticas , Atmosfera/química , Bactérias/genética , Dióxido de Carbono/análise , Mudança Climática , Efeito Estufa , Metano/análise , Temperatura
20.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031215

RESUMO

Methane production in thawing permafrost can be substantial, yet often evolves after long lag phases or is even lacking. A central question is to which extent the production of methane after permafrost thaw is determined by the initial methanogenic community. We quantified the production of methane relative to carbon dioxide (CO2) and enumerated methanogenic (mcrA) gene copies in long-term (2-7 years) anoxic incubations at 4 °C using interglacial and glacial permafrost samples of Holocene and Pleistocene, including Eemian, origin. Changes in archaeal community composition were determined by sequencing of the archaeal 16S rRNA gene. Long-term thaw stimulated methanogenesis where methanogens initially dominated the archaeal community. Deposits of interstadial and interglacial (Eemian) origin, formed under higher temperatures and precipitation, displayed the greatest response to thaw. At the end of the incubations, a substantial shift in methanogenic community composition and a relative increase in hydrogenotrophic methanogens had occurred except for Eemian deposits in which a high abundance of potential acetoclastic methanogens were present. This study shows that only anaerobic CO2 production but not methane production correlates significantly with carbon and nitrogen content and that the methanogenic response to permafrost thaw is mainly constrained by the paleoenvironmental conditions during soil formation.


Assuntos
Euryarchaeota , Pergelissolo , Archaea/genética , Euryarchaeota/genética , Metano , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...